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Abstract. We consider a Hamiltonian describing multiphoton processes of scattering and it is
then realized in terms of the generators of the Higgs algebra in order to put in evidence the
double degeneracy of the corresponding energies. The supersymmetry of such a Hamiltonian is
then proved.

1. Introduction

Kinematical and dynamical symmetries—associated with vector fields generating Lie
algebras—play a prominent role in physics. In particular, the irreducible representations
of such Lie algebras can be used [1] in order to put in evidence some physical spectra (and
the corresponding eigenfunctions) of the concerlieear models. This method is usually
referred to as the group theoretical approach. However, many physical systems cannot be
described in such a way because of tmginlinearity In other words, we need an extension

of the ordinary Lie algebras in order to handle these systems. This extension does exist and
is known as the concept of deformed (nonlinear) algebras. After Karassiov and Klimov [2]
in particular, we can characterize these deformations by the following commutation relations

[Ea, Es] =) C5yEe @

[Eav Va] = Z Tfa Vﬁ (2)
B

[Vota Vﬂ] = faﬂ(Ec)' (3)

So, the relation (1) means that the operatBygenerate a usual Lie algebra while the other
relations refer to irreducible tensor operat¥scommuting to give backonlinearfunctions
fap Of the Lie generator&,. A particularly interesting example of such a deformed algebra
is the so-called Higgs algebra [3], the (cubic) algebra of the symmetries of a two-dimensional
harmonic oscillator in a curved space. It is generated by the diagonal opésaaod the
two scaling operatord,. such that the corresponding commutation relations are

[J3, Ju] = £/ (4)

[Jy, J]=2J3+88J3 )
B being a real parameter (related to the curvature of the space in [3]). The irreducible
representations of this Higgs algebra have already been analysed [4, 5] leading to many
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new possibilities with respect to the representations of the us(@lR) (corresponding to
B =0, cf [6]).
The purpose of this paper is to prove that the Higgs algebra can be exploited, in a flat
space, in order to point out the spectrum and the eigenfunctionsfilaear Hamiltonian
[7] describing multiphoton processes of scattering, namely

H= wlaial + a)za;az + g(ai)"a? + g"a] (ag)”‘ oO<m<n (6)

whereaq;, ajT (j =1, 2) are bosonic annihilation and creation operators with frequengies
andg is a coupling constant. We then note a twofold degeneracy of the concerned energies
in some cases, a signal for supersymmetry [8] in quantum mechanics and, effectively, we
prove that the Hamiltonian (6) is supersymmetric.

The contents are then distributed as follows. In section 2, we relate the Hamiltonian
(6) to the Higgs algebra and find the corresponding spectrum. Section 3 is devoted to
the supersymmetric features of the Hamiltonian (6). We consider two specific examples in
section 4 and conclude with some comments in section 5.

2. The Higgs algebra in quantum optics

Let us rewrite the Hamiltonian (6) as

H=(o1+w)(\/C+ ;-3 +201—w)Ja+g)i + 8- )
where the operatorg; and J. defined by

Iy = (a})'ay I = di(ay)" (8)

J3 = o (aja1 — Cl;az) 9
generate a deformed (2, R) algebra

[J3, Ji] = £J¢ (10)

[Ji, J-1= f(Ja) (11)

andC is the Casimir operator of the usudl2, R) (in order to avoid confusion, let us say
that it is generated by the operatggs j.)

C=j-j++j30s+ 1. (12)
The only non-trivial context for which the Higgs algebra appears (that is to say, the analytic
function f in (11) is the one introduced in (5)) is= m = 2. In this case, we have
2 1
= | = 0’ -,
b=—%py2-1 17%3
These values of are allowed in the irreducible representations constructed inrjB] and
they lead to the relationsn(= —j, ..., +J)

1,.... (13)

m
Jalj,m) = Z1j.m) (14)

Teljom)y =G —=mG+m+DG —m—=D(G +m+2)|j,m+2) (15)

Ilj.m)y =G +mG+m =D —m+D( —m+2)|j,m—2) (16)
or, in other words, to

Ja=3ja Jr = (ju)2 (17)
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Such relations can be used to determine the energies of the Hamiltonian (7). Indeed, let us
introduce the eigenfunctions of (7) as

J
W) = Y cWlj,m) (18)
m=—j
and consider the equation
H | Y) = Ex | Y). (19)

We can, taking account of (7), (14)—(16), (18) and (19), obtain the coefficiétas well
as the associated eigenvalugsthrough

Excy) = mey) (@1 — w2) + jey,) (@1 + w2)
tec SGAMGAm—DG —m DG —m+2
e oG —m)G—m =1 +m+ 1) +m+2). (20)

Evidently it is possible to solve this system in a general way, but what is interesting for
our purpose is to create a maximal symmetry situation. In this case, we know [9] that the
angular frequencies have to be equal and we thus take

w] = w2 = w. (21)

Moreover, we can concentrate on the reaontext, the nonlinear part of (7) then describing
isotropic paramagnets in two dimensions [10]. It is not a loss of generality as we have

exp(%h) s+ J0) exp(—%h) =i(Jy —Jo). (22)

Finally, we take; to be a half-integer because it is the only case leading to degeneracies
(and thus to symmetries) in the spectrum.

We then obtain for each fixed value ¢fa twofold degeneracy ofll the energies
associated with (7), that is

E = 20j + gh k=1,2....j+3 (23)

where, is anyone of thej + 3) different solutions of

j-3 i3
[F(A, j, ]2 = [w% -y At ( Y A2 a2 A?QM‘Z

=37
k<l
k—1]#2
i3 i-3 o 2
—< D AZAZAZ - N AZAZ LA 1>x-/—z...} =0. (24)
J—3% J—3

k<l<p k=1
k—11#2

|k—p|#2

[l—pl#2

In this last relation, the quantities, are defined by

Ap = (k(k +1)(2j — k)(2j — k + 1))Y/? k=12...,j—13 (25)

Evidently it is the square in (24) which is tra hoc (remarkable) signal for the twofold
degeneracy.

Because of this twofold degeneracy, we can reasonably hope that the Hamiltonian (7)
is supersymmetric. The proof of this assertion is performed in the next section. However,
as supersymmetry asks for a semi-definite positive Hamiltonian, we assume from now on
that the energies (23) are positive ones (if not, we just have to make a shift).
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3. Supersymmetry in quantum optics

In order to prove that the Hamiltonian (7) is supersymmetric, we have ta\fisdlf-adjoint
operators, namely the supercharges, generating the Lie superatigei@ [8]

{Or, O} = 28y H k=12 ..,N (26)

where the curly brackets evidently refer to anticommutators. We have not been able to find
these operatorg) in the Higgs representation without fixing and that is why we are
going to consider another (more easily handled) representation of the Hamiltonian (7). To
this aim, we first note that it is possible to construct a transformafisnch that

H =S7HS (27)
where
H’=diag(E1,E2,...,Ej+%,E1,E2,...,EJ-+%) (28)
the energiesE, being known through (23). This (non-unitary) transformatfms indeed
given by
jt+3
S= ) Wy semini+Vyen 1) (29)
k=1
where the notatiow, ; stands for &2; + 1) by (2j + 1) matrix with zeros everywhere with
the exception of a unit at the intersection of #th row and thdth column. Moreover, the
Y refer to the eigenfunctions of (7), i.e.

Azkfllﬂggﬂ + AgaVy) 5 =MV 4 (30)

AgVs) p + As_oVrs) 5 = i) k=1,2....j+3. (31)
This system is the rewriting of

i3 s

Z H1,2n+11/fg,,c11 = Ek%(k) Z H1,2n+2102(fl)+2 = Eklﬁz(k) (32)

=0 n=0

which are the matricial forms of (19). The system (30) and (31) can be solved rather easily
and we obtain
_ F(Agp1, k=1 )

(0]
— 33
Vo A1As3. .. Ay_1 (33)
F(Az,, k—1,4)) 1
) 4
S o A e VA k=12...,j—= 34
Vae = = 0 A 173 (34)

where the functionF has been defined in (24). The remaining’ and v’ have been
fixed to 1. Rewriting the matriX in (29), we then can see that its rows and columns are
independent, ensuring the existencesof.

Now that we are sure of the existence $find its inverse, we can, as a second step,
write the Hamiltonian (28) in the form

it3 it3
H' = Ek(ek,k + ej+k+%.j+k+%) = Z EkPk, (35)
k=1 k=1

where the matrice®, have the properties of projectors, i.e.
jt+3
PP/ = 8, P, Y P=1 (36)
k=1
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The key point is that, despite the non-unitarity $if this property still holds if we come
back to the Hamiltoniar{. Indeed, we have

jt+i j+3
H=SHS'=) ESPS"'=)Y EP (37)
k=1 k=1
with
j+3
PP =8uP/ Z Pl =1 (38)
k=1

The projectorspP;’ refer to the other representation Bf we considered at the beginning of
this section. More precisely, we can take

Pl =00® P (39)

oo being the 2x 2 identity matrix, and it is then clear that the operators

j+3

QlZZka01®Pk (40)
=1
it3

Q2= VE02® P (41)
k=1

are effective supercharges of the Hamiltonian (37) in tis- 2 context [8]. We have thus
proved that the Hamiltonian (6) (realized through the projectors (38)) is supersymmetric
whenm =n = 2.

The last point is to realize these projectaPs. We will achieve this by using the
Clifford algebrasCly)—1 [11]. Let us recall that the algebr@l,y,_; is that generated by
the elementsy, (k =1,2,...,2M — 1) satisfying the anticommutation relations

{o, o} = 26y. (42)
Then, we can convince ourselves that the projecirare given by

Pi=P PP ... P, (43)

P,=PtPfPS... Py, (44)
and so on, until

Pi=P PL Py ... Py, (45)
where the positive intege! is fixed according to

j<2" -3 (46)
In these last relations, the projectaps and P;* are realized through

pE = %(l + ) (47)
P = 1(1+iagazi) 1=1,2,....M—1. (48)
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4. The (j = 2) and (j = %) examples

If we take j = g we have three different values for the twofold degenerated energies (23).
The quantities\; (k = 1, 2, 3) are solutions of

(A2 —1120)2=0 (49)
leading to
E1 =50 Eo =50 + 4V7g Es =50 — 4/7g. (50)

The Hamiltonian (6) can be realized with-66 matrices through the Higgs representation
(7) or it can be realized with & 8 matrices through the representation (37). In this last
case, we can consider the Clifford generator&€ of

a1 = 01 ® 0y ax =02 Q00 a3 =03 03 (1)
giving rise to

Py = (00 ® 00+ 01 ® 00 — 01 ® 03 — 00 ® 03) (52)

Py = 3(00 ® 00+ 01 ® 60 + 01 ® 03+ 00 ® 03) (53)

P; = %(oo ® 09 — 01 ® 0p) (54)

and the corresponding supercharges (40) and (41).
If we now takej = % we have four different values for the energies (23). The quantities
M (k=1,2,3,4) become solutions of

(A\* — 5042 4151202 =0 (55)
leading to

E1 = Tw++/ 252+ 48V21g E; = T + 1/ 252 — 48V21g

E3 = Tw —\/ 252+ 48V21g Es=Tow — 4/ 252— 48V21g. (56)

The Hamiltonian (6) can be realized with>-88 matrices both in the Higgs representation
(7) and in the representation (37). The realization (51) still holds, leading to

P3 = (00 ® 00 — 01 ® 00 — 01 ® 03 — 00 ® 03) (7)
Py = (00 ® 00 — 01 ® 00 + 01 ® 03 + 00 ® 03) (58)

besides the projectors (52) and (53). The corresponding supercharges (40) and (41) are then
once again completely determined.

5. Comments

We have proved, by using a deformet2, R) algebra and specific projectors, that the
Hamiltonian (6) is supersymmetric whem = n = 2. Let us immediately stress that this
does not mean that this Hamiltonian is not supersymmetric for other valuesaofd n.
Simply in these cases the representations of the deformed algebra (10) and (11) are not yet
known and they have first to be performed before going to physical conclusions such as
supersymmetry.

Another comment is that it is the first time, to our knowledge, that a Hamiltonian of
guantum optics has been found to be supersymmetric in itself. We have to distinguish our
approach, where onlpne Hamiltonian is concerned, from other approaches [12] where
two Hamiltonians (with identical spectra) are necessary in order to reveal supersymmetric
features in quantum optics.
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