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Abstract. We consider a Hamiltonian describing multiphoton processes of scattering and it is
then realized in terms of the generators of the Higgs algebra in order to put in evidence the
double degeneracy of the corresponding energies. The supersymmetry of such a Hamiltonian is
then proved.

1. Introduction

Kinematical and dynamical symmetries—associated with vector fields generating Lie
algebras—play a prominent role in physics. In particular, the irreducible representations
of such Lie algebras can be used [1] in order to put in evidence some physical spectra (and
the corresponding eigenfunctions) of the concernedlinear models. This method is usually
referred to as the group theoretical approach. However, many physical systems cannot be
described in such a way because of theirnonlinearity. In other words, we need an extension
of the ordinary Lie algebras in order to handle these systems. This extension does exist and
is known as the concept of deformed (nonlinear) algebras. After Karassiov and Klimov [2]
in particular, we can characterize these deformations by the following commutation relations

[Ea,Eb] =
∑
c

CcabEc (1)

[Ea, Vα] =
∑
β

τβaαVβ (2)

[Vα, Vβ ] = fαβ(Ec). (3)

So, the relation (1) means that the operatorsEc generate a usual Lie algebra while the other
relations refer to irreducible tensor operatorsVα commuting to give backnonlinearfunctions
fαβ of the Lie generatorsEc. A particularly interesting example of such a deformed algebra
is the so-called Higgs algebra [3], the (cubic) algebra of the symmetries of a two-dimensional
harmonic oscillator in a curved space. It is generated by the diagonal operatorJ3 and the
two scaling operatorsJ± such that the corresponding commutation relations are

[J3, J±] = ±J± (4)

[J+, J−] = 2J3+ 8βJ 3
3 (5)

β being a real parameter (related to the curvature of the space in [3]). The irreducible
representations of this Higgs algebra have already been analysed [4, 5] leading to many
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new possibilities with respect to the representations of the usualsl(2, R) (corresponding to
β = 0, cf [6]).

The purpose of this paper is to prove that the Higgs algebra can be exploited, in a flat
space, in order to point out the spectrum and the eigenfunctions of anonlinear Hamiltonian
[7] describing multiphoton processes of scattering, namely

H = ω1a
†
1a1+ ω2a

†
2a2+ g(a†1)nam2 + g∗an1(a†2)m 06 m 6 n (6)

whereaj , a
†
j (j = 1, 2) are bosonic annihilation and creation operators with frequenciesωj

andg is a coupling constant. We then note a twofold degeneracy of the concerned energies
in some cases, a signal for supersymmetry [8] in quantum mechanics and, effectively, we
prove that the Hamiltonian (6) is supersymmetric.

The contents are then distributed as follows. In section 2, we relate the Hamiltonian
(6) to the Higgs algebra and find the corresponding spectrum. Section 3 is devoted to
the supersymmetric features of the Hamiltonian (6). We consider two specific examples in
section 4 and conclude with some comments in section 5.

2. The Higgs algebra in quantum optics

Let us rewrite the Hamiltonian (6) as

H = (ω1+ ω2)(

√
C + 1

4 − 1
2)+ 2(ω1− ω2)J3+ gJ+ + g∗J− (7)

where the operatorsJ3 andJ± defined by

J+ = (a†1)nam2 J− = an1(a†2)m (8)

J3 = 1

m+ n(a
†
1a1− a†2a2) (9)

generate a deformedsl(2, R) algebra

[J3, J±] = ±J± (10)

[J+, J−] = f (J3) (11)

andC is the Casimir operator of the usualsl(2, R) (in order to avoid confusion, let us say
that it is generated by the operatorsj3, j±)

C = j−j+ + j3(j3+ 1). (12)

The only non-trivial context for which the Higgs algebra appears (that is to say, the analytic
function f in (11) is the one introduced in (5)) isn = m = 2. In this case, we have

β = − 2

2j2+ 2j − 1
j = 0,

1

2
, 1, . . . . (13)

These values ofβ are allowed in the irreducible representations constructed in [5]only and
they lead to the relations (m = −j, . . . ,+j )

J3|j,m〉 = m

2
|j,m〉 (14)

J+|j,m〉 =
√
(j −m)(j +m+ 1)(j −m− 1)(j +m+ 2)|j,m+ 2〉 (15)

J−|j,m〉 =
√
(j +m)(j +m− 1)(j −m+ 1)(j −m+ 2)|j,m− 2〉 (16)

or, in other words, to

J3 = 1
2j3 J± = (j±)2. (17)
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Such relations can be used to determine the energies of the Hamiltonian (7). Indeed, let us
introduce the eigenfunctions of (7) as

|ψk〉 =
j∑

m=−j
c(k)m |j,m〉 (18)

and consider the equation

H | ψk〉 = Ek | ψk〉. (19)

We can, taking account of (7), (14)–(16), (18) and (19), obtain the coefficientsc(k)m as well
as the associated eigenvaluesEk through

Ekc
(k)
m = mc(k)m (ω1− ω2)+ jc(k)m (ω1+ ω2)

+gc(k)m−2

√
(j +m)(j +m− 1)(j −m+ 1)(j −m+ 2)

+gc(k)m+2

√
(j −m)(j −m− 1)(j +m+ 1)(j +m+ 2). (20)

Evidently it is possible to solve this system in a general way, but what is interesting for
our purpose is to create a maximal symmetry situation. In this case, we know [9] that the
angular frequencies have to be equal and we thus take

ω1 = ω2 = ω. (21)

Moreover, we can concentrate on the realg context, the nonlinear part of (7) then describing
isotropic paramagnets in two dimensions [10]. It is not a loss of generality as we have

exp

(
iπ

2
J3

)
(J+ + J−) exp

(
− iπ

2
J3

)
= i(J+ − J−). (22)

Finally, we takej to be a half-integer because it is the only case leading to degeneracies
(and thus to symmetries) in the spectrum.

We then obtain for each fixed value ofj a twofold degeneracy ofall the energies
associated with (7), that is

Ek = 2ωj + gλk k = 1, 2, . . . , j + 1
2 (23)

whereλk is anyone of the(j + 1
2) different solutions of

[F(Ak, j, λ)]
2 ≡

[
λj+

1
2 −

j− 1
2∑

k =1

A2
kλ
j− 3

2 +
( j− 1

2∑
k<l|k−l|6=2

A2
kA

2
l − A2

j− 3
2
A2
j− 1

2

)
λj−

7
2

−
( j− 1

2∑
k<l<p
|k−l|6=2
|k−p|6=2
|l−p|6=2

A2
kA

2
l A

2
p −

j− 9
2∑

k =1

A2
kA

2
j− 3

2
A2
j− 1

2

)
λj−

11
2 . . .

]2

= 0. (24)

In this last relation, the quantitiesAk are defined by

Ak = (k(k + 1)(2j − k)(2j − k + 1))1/2 k = 1, 2, . . . , j − 1
2. (25)

Evidently it is the square in (24) which is thead hoc (remarkable) signal for the twofold
degeneracy.

Because of this twofold degeneracy, we can reasonably hope that the Hamiltonian (7)
is supersymmetric. The proof of this assertion is performed in the next section. However,
as supersymmetry asks for a semi-definite positive Hamiltonian, we assume from now on
that the energies (23) are positive ones (if not, we just have to make a shift).
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3. Supersymmetry in quantum optics

In order to prove that the Hamiltonian (7) is supersymmetric, we have to findN self-adjoint
operators, namely the supercharges, generating the Lie superalgebrasqm(2) [8]

{Qk,Ql} = 2δklH k, l = 1, 2, . . . , N (26)

where the curly brackets evidently refer to anticommutators. We have not been able to find
these operatorsQk in the Higgs representation without fixingj and that is why we are
going to consider another (more easily handled) representation of the Hamiltonian (7). To
this aim, we first note that it is possible to construct a transformationS such that

H ′ = S−1HS (27)

where

H ′ = diag(E1, E2, . . . , Ej+ 1
2
, E1, E2, . . . , Ej+ 1

2
) (28)

the energiesEk being known through (23). This (non-unitary) transformationS is indeed
given by

S =
j+ 1

2∑
k,l=1

(ψ
(l)

2k−1e2k+1,l + ψ(l)

2k e2k,j+l+ 1
2
) (29)

where the notationek,l stands for a(2j +1) by (2j +1) matrix with zeros everywhere with
the exception of a unit at the intersection of thekth row and thelth column. Moreover, the
ψ refer to the eigenfunctions of (7), i.e.

A2k−1ψ
(l)

2k+1+ A2k−3ψ
(l)

2k−3 = λlψ(l)

2k−1 (30)

A2kψ
(l)

2k+2+ A2k−2ψ
(l)

2k−2 = λlψ(l)

2k k = 1, 2, . . . , j + 1
2. (31)

This system is the rewriting of

j− 1
2∑

n=0

Hl,2n+1ψ
(k)

2n+1 = Ekψ(k)
l

j− 1
2∑

n=0

Hl,2n+2ψ
(k)

2n+2 = Ekψ(k)
l (32)

which are the matricial forms of (19). The system (30) and (31) can be solved rather easily
and we obtain

ψ
(l)

2k+1 =
F(A2p−1, k − 1, λl)

A1A3 . . . A2k−1
(33)

ψ
(l)

2k+2 =
F(A2p, k − 1, λl)

A2A4 . . . A2k
k = 1, 2, . . . , j − 1

2
(34)

where the functionF has been defined in (24). The remainingψ(l)

1 andψ(l)

2 have been
fixed to 1. Rewriting the matrixS in (29), we then can see that its rows and columns are
independent, ensuring the existence ofS−1.

Now that we are sure of the existence ofS and its inverse, we can, as a second step,
write the Hamiltonian (28) in the form

H ′ =
j+ 1

2∑
k=1

Ek(ek,k + ej+k+ 1
2 ,j+k+ 1

2
) ≡

j+ 1
2∑

k=1

EkP
′
k (35)

where the matricesP ′k have the properties of projectors, i.e.

P ′kP
′
l = δklP ′k

j+ 1
2∑

k=1

P ′k = I. (36)
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The key point is that, despite the non-unitarity ofS, this property still holds if we come
back to the HamiltonianH . Indeed, we have

H = SH ′S−1 =
j+ 1

2∑
k=1

EkSP
′
kS
−1 ≡

j+ 1
2∑

k=1

EkP
′′
k (37)

with

P ′′k P
′′
l = δklP ′′k

j+ 1
2∑

k=1

P ′′k = I. (38)

The projectorsP ′′k refer to the other representation ofH we considered at the beginning of
this section. More precisely, we can take

P ′′k = σ0⊗ Pk (39)

σ0 being the 2× 2 identity matrix, and it is then clear that the operators

Q1 =
j+ 1

2∑
k=1

√
Ek σ1⊗ Pk (40)

Q2 =
j+ 1

2∑
k=1

√
Ek σ2⊗ Pk (41)

are effective supercharges of the Hamiltonian (37) in thisN = 2 context [8]. We have thus
proved that the Hamiltonian (6) (realized through the projectors (38)) is supersymmetric
whenm = n = 2.

The last point is to realize these projectorsPk. We will achieve this by using the
Clifford algebrasCl2M−1 [11]. Let us recall that the algebraCl2M−1 is that generated by
the elementsαk (k = 1, 2, . . . ,2M − 1) satisfying the anticommutation relations

{αk, αl} = 2δkl . (42)

Then, we can convince ourselves that the projectorsPk are given by

P1 = P+P+1 P+2 . . . P+M−1 (43)

P2 = P+P+1 P+2 . . . P−M−1 (44)

and so on, until

Pj+ 1
2
= P−P−1 P−2 . . . P−M−1 (45)

where the positive integerM is fixed according to

j 6 2M − 1
2. (46)

In these last relations, the projectorsP± andP±l are realized through

P± = 1
2(1± α1) (47)

P±l = 1
2(1± iα2lα2l+1) l = 1, 2, . . . ,M − 1. (48)
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4. The (j = 5
2) and (j = 7

2) examples

If we takej = 5
2, we have three different values for the twofold degenerated energies (23).

The quantitiesλk (k = 1, 2, 3) are solutions of

(λ3− 112λ)2 = 0 (49)

leading to

E1 = 5ω E2 = 5ω + 4
√

7g E3 = 5ω − 4
√

7g. (50)

The Hamiltonian (6) can be realized with 6× 6 matrices through the Higgs representation
(7) or it can be realized with 8× 8 matrices through the representation (37). In this last
case, we can consider the Clifford generators ofCl3

α1 = σ1⊗ σ0 α2 = σ2⊗ σ0 α3 = σ3⊗ σ3 (51)

giving rise to

P1 = 1
4(σ0⊗ σ0+ σ1⊗ σ0− σ1⊗ σ3− σ0⊗ σ3) (52)

P2 = 1
4(σ0⊗ σ0+ σ1⊗ σ0+ σ1⊗ σ3+ σ0⊗ σ3) (53)

P3 = 1
2(σ0⊗ σ0− σ1⊗ σ0) (54)

and the corresponding supercharges (40) and (41).
If we now takej = 7

2, we have four different values for the energies (23). The quantities
λk (k = 1, 2, 3, 4) become solutions of

(λ4− 504λ2+ 15120)2 = 0 (55)

leading to

E1 = 7ω +
√

252+ 48
√

21g E2 = 7ω +
√

252− 48
√

21g

E3 = 7ω −
√

252+ 48
√

21g E4 = 7ω −
√

252− 48
√

21g. (56)

The Hamiltonian (6) can be realized with 8× 8 matrices both in the Higgs representation
(7) and in the representation (37). The realization (51) still holds, leading to

P3 = 1
4(σ0⊗ σ0− σ1⊗ σ0− σ1⊗ σ3− σ0⊗ σ3) (57)

P4 = 1
4(σ0⊗ σ0− σ1⊗ σ0+ σ1⊗ σ3+ σ0⊗ σ3) (58)

besides the projectors (52) and (53). The corresponding supercharges (40) and (41) are then
once again completely determined.

5. Comments

We have proved, by using a deformedsl(2, R) algebra and specific projectors, that the
Hamiltonian (6) is supersymmetric whenm = n = 2. Let us immediately stress that this
does not mean that this Hamiltonian is not supersymmetric for other values ofm and n.
Simply in these cases the representations of the deformed algebra (10) and (11) are not yet
known and they have first to be performed before going to physical conclusions such as
supersymmetry.

Another comment is that it is the first time, to our knowledge, that a Hamiltonian of
quantum optics has been found to be supersymmetric in itself. We have to distinguish our
approach, where onlyone Hamiltonian is concerned, from other approaches [12] where
two Hamiltonians (with identical spectra) are necessary in order to reveal supersymmetric
features in quantum optics.
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